POPULATION OF PROTEOGLYCANS IN DIFFERENT ANATOMICAL SITES OF BOVINE KNEE JOINT ARTICULAR CARTILAGE
DOI:
https://doi.org/10.24933/rep.v7i1.301Keywords:
Biomechanical forces, glycosaminoglycans, anatomical variationAbstract
The mechanical forces that act on a synovial joint induce changes in the composition and organization of articular cartilage. Chondrocytes respond to stimuli both in a quantitative and qualitative manner with respect to the extracellular matrix. In the present study, it is investigated five different regions of the bovine knee joint in terms of proteoglycan populations and their glycosaminoglycan content. The high density PG population was isolated using ultracentrifugation (D1 fraction) and gel filtration. The PG presented similar size in all regions, but in tibia these molecules present higher Mr. The chondroitin sulfate was the more prominent glycosaminoglycan detected from D1 fraction and their chains presented around 40 KDa. Two populations of non-aggregating PG were isolated in similar quantity from all regions These molecules presented polydisperse characteristics and migrating at about 70 and 200 kDa and exhibiting a behavior similar to that of the small proteoglycans decorin and biglycan. The presence of decorin was confirmed by immunoblotting. Agarose gel analysis after papain digestion showed the presence of dermatan sulfate in these PGs. The presence of decorin and especially of biglycan in the D2 fraction suggests that these small proteoglycans can strongly interact with high molecular weight non-aggregating proteoglycans. Another PG population, with MW around 60 Kda, was also isolated in low density ultracentrifugation fractions (D4). The immunoblotting for fibromodulin was positive to these molecules. No difference was verified in relation to quantitative aspects, but the treatment to fibromodulin antibody was also positive to molecules with 150 kDa. These molecules desappear when the sample is treated with reduced agents. This phenomenon can be related to a self-aggregation. The presence of 150 kDa aggregated FM was more prominent in the tibia articular cartilage. These results indicate the effect of mechanical stimulation on the different regions of the same joint. When considering the relationship existing between matrix composition and mechanical or chemical stimuli, one should keep in mind that chondrocytes are sensitive to different stimuli and may present a heterogeneous metabolic behavior in different regions of the same joint.
Downloads
References
AHMED, A.M.; BURKE, D.L. In vitro mesurement of static pressure distribution in synovial joints. I-Tibial surface of the knee. Journal of Biomedical Engineering, v. 105, n.2, p. 216-225, 1983. DOI: https://doi.org/10.1115/1.3138409
AYDELOTE, M.B.; SCHUMACHER, B.L.; KUTTNER, H.E. Heterogeneity of articular chondrocytes. In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
ARCANJO, K.D.S.; GOMES, L.; PIMENTEL, E.R. Effect of magnesium chloride and guanidinium chloride on the extraction of components of extracellular matrix from chicken cartilage. Memórias do Instituto Oswaldo Cruz, v. 89, n.2, p. 93-97, 1994. DOI: https://doi.org/10.1590/S0074-02761994000100016
BAGCHI, T.; LARSON, D.E; SELLS, B.H. Cytoskeletal association of muscle-specific mRNAs in differentiating L6 rat myoblasts. Experimental Cell Research, v. 168, n. 2., p. 160-172, 1987. DOI: https://doi.org/10.1016/0014-4827(87)90425-3
BEGG, D.A.; SALMON, E.D.; HYATT, H.A. Changes in the structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure. Journal of Cell Biology, v. 97, n.12, p. 1795-1805, 1983. DOI: https://doi.org/10.1083/jcb.97.6.1795
BJELLE, A.; GARDELL, S.; HEINEGÅRD, D. Proteoglycans of articular cartilage from bovine lower femoral epiphysis. Extraction and characterization of proteoglycans from two sites within the same joint. Connective Tisssue Research, v. 2, n. 3, p. 111-116, 1974. DOI: https://doi.org/10.3109/03008207409152096
BLUM, B.; BEIER, H.; GROSS, H.J. Improved silver staining of plant proteins, RNA in polyacrylamide gels. Electrophoresis, v. 8, n. 1, p. 93-99, 1987. DOI: https://doi.org/10.1002/elps.1150080203
BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein dye binding. Analytical Biochemistry, v. 72, n. 3, p. 248-254, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
BULLOUGH, P.G. et al. Topographical variation in the morphology and biochemistry of adult canine tibial plateau articular cartilage. Journal Orthopaedical Research, v. 3, n.1, p. 1-16, 1985. DOI: https://doi.org/10.1002/jor.1100030101
BUSCHMANN, M.D. et al. Chondrocytes in agarose culture synthetize a mechanically functional extracellular matrix. Journal Orthopaedical Research, v. 10, n. 7, p. 745-758, 1992. DOI: https://doi.org/10.1002/jor.1100100602
CATERSON, B.; LOWTHER, D.A. Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochemica Biophysica Acta, v. 540, n.2, p. 412-422, 1978. DOI: https://doi.org/10.1016/0304-4165(78)90171-X
CHOI, H.V. et al. Characterization of dermatan sulfate proteoglycans, DS-PG I DS-PG II, from bovine articular cartilage and skin isolated by octyl-sepharose cromatography. Journal Biological Chemistry, v. 264, n. 4, p. 2876-2884, 1989. DOI: https://doi.org/10.1016/S0021-9258(19)81694-0
COTTA, H.; PUHL, W. The pathophysiology of damage to articular cartilage. In: The Knee, edited by HASTINGS, D.E., Springer, Berlim, 1978.
DIETRICH, C.P.; DIETRICH, S.M.C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, v. 70, n. 4, p. 645-647, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90496-6
DISCHE, Z. A new specific color reaction of hexuronic acids. Journal Biological Chemistry, v. 167, n. 1, p. 189-199, 1947. DOI: https://doi.org/10.1016/S0021-9258(17)35155-4
ESQUISATTO, M.A.M.; PIMENTEL, E.R.; GOMES, L. Extracellular matrix composition of different regions of knee joint cartilage in catlle. Annals of Anatomy, v. 179, n.7, p. 433 – 437, 1997. DOI: https://doi.org/10.1016/S0940-9602(97)80044-1
FARNDALE, R.W.; BUTTLE, D.J.; BARRET, A.J. Improved quantitation and discrimination of sulphated glyocosaminoglycans by use of dimethylmethylene blue. Biochemica Biophysica Acta, v. 883, n. 1, 1986. DOI: https://doi.org/10.1016/0304-4165(86)90306-5
FISCHER, L. W. et al. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral component of developing human bone. Journal Biological Chemistry, v. 262, n. 4, p. 702-708, 1987. DOI: https://doi.org/10.1016/S0021-9258(18)47991-4
FREEMAN, M.A.R.; SWANSON, S.H.V.; MANLEY, P.T. Stress-lowering function of articular cartilage. Medical and Biological Engineering, v. 7, n. 2, p. 245-251, 1975. DOI: https://doi.org/10.1007/BF02477735
GOMES, L.; PIMENTEL, E.R. Detection of small proteoglycans present in xiphoid cartilage regions submitted to different biomechanical forces. Brazilian Journal of Medical and Biological Research, v. 27, n. 12, p. 2117-2124, 1994.
GOMES, L. et al. Is there a relationship between the state of aggregation of small proteoglycans and the biomechanical properties of tissue? Brazilian Journal of Medical and Biological Research, v. 29, n. 8, p. 1243-1246, 1996.
KEMPSON, G. The mechanical properties of articular cartilage. In: The Joints and Synovial Fluid, edited by Sokoloff, L. Academic Press, New York, 1979 DOI: https://doi.org/10.1016/B978-0-12-655102-0.50011-4
KRUSSIUS, T.; RUOLATHI, E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proceedings of National Academy of Sciences USA, v. 87, n. 3, p. 683-687, 1986.
HAYES, W.C.; BODINE, A.J. Flow-independent viscoelastic properties of articular cartilage matrix. Journal of Biomechanics, v. 11, n. 3, p. 407-419, 1978. DOI: https://doi.org/10.1016/0021-9290(78)90075-1
HEDBON, E.; HEINEGÅRD, D. Interaction of a 59 kDa connective tissue matrix protein with collagen I and collagen II. Journal Biological Chemistry, v. 264, n. 12, p. 6898-6905, 1989. DOI: https://doi.org/10.1016/S0021-9258(18)83516-5
HEINEGÅRD, D.; OLDBERG, A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. Faseb Journal, v. 3, n. 6, p. 2042-2051, 1989. DOI: https://doi.org/10.1096/fasebj.3.9.2663581
HEINEGÅRD, D.; PAULSSON, M. Cartilage. Methods in Enzymology, v. 145, n. 1, p. 336-363, 1987. DOI: https://doi.org/10.1016/0076-6879(87)45020-9
HEISE, N.; TOLEDO, O.M.S. Age-related changes in glycosaminoglycan distribution in different anatomical sites on the surface of knee-joint articular cartilage in young rabbits. Annals of Anatomy, v. 175, n. 1, p. 35-40, 1993. DOI: https://doi.org/10.1016/S0940-9602(11)80234-7
HILDEBRAND, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor . Biochemical Journal, v. 302, n. 3, p. 527-534, 1994. DOI: https://doi.org/10.1042/bj3020527
KIM, Y.J. et al. Mechanical regulation of cartilage biosynthethtic behavior: physical stimuli. Archives in Biochemistry and Biophysics, v. 311, n. 1, 1994. DOI: https://doi.org/10.1006/abbi.1994.1201
KIVIRANTA I, et al. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis and Rheumatism, v. 30, n.5, p. 801-809, 1987. DOI: https://doi.org/10.1002/art.1780300710
KIVIRANTA, I. et al. Moderate running execise auments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. Journal Orthopaedical Research, v. 6, n. 2, p. 188-195, 1988. DOI: https://doi.org/10.1002/jor.1100060205
KIVIRANTA, I. et al. Effect of motion and load on articular cartilage in animal models In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
LAMMI, M.J. et al. Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochemical Journal, v. 304, n.7, p. 723-730, 1994. DOI: https://doi.org/10.1042/bj3040723
MAQUET, P.G.; VAN DER BERG, A.J.; SIMONET, J.C. Femorotibial weight beaing areas. Journal of Bone and Joint Surgery – American, v. 57, n. 5, p. 766-771, 1975. DOI: https://doi.org/10.2106/00004623-197557060-00005
MANICOURT, D.H. et al. Characterization of the proteoglycans recovered under nondissociative conditions from normal articular cartilage of rabbits and dogs. Journal Biological Chemistry, v. 261, n. 12, p. 5426-5433, 1986. DOI: https://doi.org/10.1016/S0021-9258(19)57233-7
MITCHELL, D.; HARDINGHAM, T. The effects of cycloheximide on the biosynthesis and secretional proteoglycans by chondrocytes in cultures. Biochemical Journal, v. 196, n. 5, p. 521-529, 1985. DOI: https://doi.org/10.1042/bj1960521
MOURÃO, P.A.S. Proteoglycans, glycosaminoglycans and sulfated polysaccharides from connective tissues. Memórias do Instituto Oswaldo Cruz, v. 86, n. 1, p. 13-22, 1991. DOI: https://doi.org/10.1590/S0074-02761991000700003
MOCKENHAUPT, J. Pressure distribution in partly contracting joints a computarized simulation model. Anatomischer Anzeiger, v. 171, n.3, p. 313-321, 1990.
MUIR, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays, v. 17, n. 12, p. 1039-1048, 1995. DOI: https://doi.org/10.1002/bies.950171208
PALMOSKI, M.J.; BRANDT, K.D. Effects of static and cyclic compressive forces on articular cartilage plugs in vitro. Arthritis and Rheumatism, v. 27, n. 5, p. 675-681, 1984. DOI: https://doi.org/10.1002/art.1780270611
PARKKINEN, J.J. et al. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. Journal Biological Chemistry, v. 10, n. 4, p. 610-620, 1992. DOI: https://doi.org/10.1002/jor.1100100503
PARKKINEN, J.J. et al. Effects of cyclic hydostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Archives of Biochemistry and Biophysics, v. 300, n. 6, p. 458-465, 1993. DOI: https://doi.org/10.1006/abbi.1993.1062
REFIOR, H.J.; HACKENBROCH, M.H. The reaction of articular cartilage to pressure, immobilization and distraction. In: The Knee, edited by HASTINGS, D.E. Springer, Berlin, 1978.
ROSENBERG, L.C. et al. Proteoglycans from bovine proximal humeral articular cartilage. Structural basis for the polydispersity of proteoglycan subunit. Journal Biological Chemistry, v. 251, n.11, p. 6439-6444, 1976. DOI: https://doi.org/10.1016/S0021-9258(20)81880-8
ROSENBERG, L.C. Structure and function of dermatan sulfate proteoglycans in articular cartilage. In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
ROSENBERG, L.C. et al. Isolation of dermatan sulphate from mature bovine articular cartilage. Journal Biological Chemistry, v. 260, n.11, p. 6304-6313, 1995. DOI: https://doi.org/10.1016/S0021-9258(18)88971-2
ROUGLHEY, P.J.; WHITE, R.J. Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II. Biochemical Journal, v. 162, n. 8, p. 823-827, 1989. DOI: https://doi.org/10.1042/bj2620823
SAH, R.L.Y. et al. Biosynthetic response of cartilage explants to dynamic compression. Journal Orthopaedical Research, v. 7, n. 6, p. 619-636, 1989. DOI: https://doi.org/10.1002/jor.1100070502
SALTER, R.R. et al. The biological effects of continuos passive motion on the healing of full-thickness defects in articular cartilage. Journal of Bone and Joint Surgery – American, v. 62, n.10, p. 1232-1251, 1980. DOI: https://doi.org/10.2106/00004623-198062080-00002
SIMON, W.H. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis and Rheumatism, v. 13, n. 2, p. 244-255, 1970. DOI: https://doi.org/10.1002/art.1780130305
SOMMARIN, Y.; LARSON, T.; HEINEGÅRD, D. Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Experimental Cell Research, v. 184, n.1, p. 181-192, 1989.STRIDER, W.; PAL, S.; ROSENBERG, L. Comparison of proteoglycan from bovine articular cartilage Journal Biological Chemistry, v. 254, n. 5, p. 945-954, 1975. DOI: https://doi.org/10.1016/0014-4827(89)90376-5
SWANN, D.A., POWELL, S., SOTMAN, S. The heterogeneity of cartilage proteoglycans. Isolation of different types of proteoglycans from bovine articular cartilage. Journal Biological Chemistry, v. 254, n. 4, p. 945-954, 1979. DOI: https://doi.org/10.1016/S0021-9258(17)37896-1
TAMMI, M. et al. Joint induced alteration in articular cartilage. In: Joint Loading: Biology and Health of Articular Strucutres, edited by HELMINEN, H.J.; KIVIRANTA, I.; TAMMI, M.; SÄÄMÄNEN, A-M.; PAULLONEN, K; JURVELIN, J. John Wright (Butterworth), Bristol, England, 1987.
VENN, M.F. Chemical composition of human femoral head cartilage. Influence of topographical position and fibrilation. Annals of Rheumatic Diseases, v. 38, n. 1, p. 57-62, 1979. DOI: https://doi.org/10.1136/ard.38.1.57
YAMAGUCHI, Y.; MANN, D.M.; RUOSLATHI, E. Negative regulation of transforming growth factor by the proteoglycan decorin. Nature, v. 336, n. 2, p. 281-284, 1990. DOI: https://doi.org/10.1038/346281a0
ZAMBETTI, G. et al. Subcellular localization of histone messenger RNAs on cytoskeleton-associated free polyssomes in Hela S3 cells. Journal Cell Physiology, v. 125, n. 3, p. 345-353, 1985. DOI: https://doi.org/10.1002/jcp.1041250225
ZINGALES, B. (1994). Analysis of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In: Genes and Antigens of Parasites, edited by MOREL, C.M., Fiocruz, Rio de Janeiro.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 teste
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).