População de proteoglicanos em diferentes sítios anatômicos da cartilagem articular do joelho bovino
DOI:
https://doi.org/10.24933/rep.v7i1.301Palavras-chave:
Forças biomecânicas, glicosaminoglicanos, variação anatômicaResumo
As forças mecânicas que atuam sobre uma articulação sinovial induzem alterações na composição e organização da cartilagem articular. Os condrócitos respondem a estímulos tanto de maneira quantitativa quanto qualitativa em relação à matriz extracelular. No presente estudo, foram investigados cinco regiões diferentes da articulação do joelho bovino em termos de populações de proteoglicanos e seu conteúdo de glicosaminoglicanos. A população de PG de alta densidade foi isolada por ultracentrifugação (fração D1) e filtração em gel. O PG apresentou tamanho semelhante em todas as regiões, porém na tíbia essas moléculas apresentam maior Mr. O sulfato de condroitina foi o glicosaminoglicano mais proeminente detectado na fração D1 e suas cadeias apresentaram em torno de 40 KDa. Duas populações de PG não agregantes foram isoladas em quantidade similar de todas as regiões. Essas moléculas apresentaram características polidispersas e migrando em torno de 70 e 200 kDa e exibindo um comportamento semelhante ao dos pequenos proteoglicanos decorin e biglican. A presença de decorin foi confirmada por immunoblotting. A análise do gel de agarose após a digestão com papaína mostrou a presença de dermatan sulfato nesses PGs. A presença de decorin e especialmente de biglican na fração D2 sugere que esses pequenos proteoglicanos podem interagir fortemente com proteoglicanos não agregantes de alto peso molecular. O imunoblotting para fibromodulina foi positivo para essas moléculas. Nenhuma diferença foi verificada em relação aos aspectos quantitativos, mas o tratamento com anti-fibromodulina também foi positivo para moléculas com 150 kDa. Essas moléculas desaparecem quando a amostra é tratada com agentes redutores. Esse fenômeno pode estar relacionado a autoagregação. A presença de FM agregado de 150 kDa foi mais proeminente na cartilagem articular da tíbia. Esses resultados indicam o efeito da estimulação mecânica nas diferentes regiões de uma mesma articulação. Ao considerar a relação existente entre a composição da matriz e estímulos mecânicos ou químicos, deve-se ter em mente que os condrócitos são sensíveis a diferentes estímulos e podem apresentar um comportamento metabólico heterogêneo em diferentes regiões de uma mesma articulação.
Downloads
Referências
AHMED, A.M.; BURKE, D.L. In vitro mesurement of static pressure distribution in synovial joints. I-Tibial surface of the knee. Journal of Biomedical Engineering, v. 105, n.2, p. 216-225, 1983. DOI: https://doi.org/10.1115/1.3138409
AYDELOTE, M.B.; SCHUMACHER, B.L.; KUTTNER, H.E. Heterogeneity of articular chondrocytes. In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
ARCANJO, K.D.S.; GOMES, L.; PIMENTEL, E.R. Effect of magnesium chloride and guanidinium chloride on the extraction of components of extracellular matrix from chicken cartilage. Memórias do Instituto Oswaldo Cruz, v. 89, n.2, p. 93-97, 1994. DOI: https://doi.org/10.1590/S0074-02761994000100016
BAGCHI, T.; LARSON, D.E; SELLS, B.H. Cytoskeletal association of muscle-specific mRNAs in differentiating L6 rat myoblasts. Experimental Cell Research, v. 168, n. 2., p. 160-172, 1987. DOI: https://doi.org/10.1016/0014-4827(87)90425-3
BEGG, D.A.; SALMON, E.D.; HYATT, H.A. Changes in the structural organization of actin in the sea urchin egg cortex in response to hydrostatic pressure. Journal of Cell Biology, v. 97, n.12, p. 1795-1805, 1983. DOI: https://doi.org/10.1083/jcb.97.6.1795
BJELLE, A.; GARDELL, S.; HEINEGÅRD, D. Proteoglycans of articular cartilage from bovine lower femoral epiphysis. Extraction and characterization of proteoglycans from two sites within the same joint. Connective Tisssue Research, v. 2, n. 3, p. 111-116, 1974. DOI: https://doi.org/10.3109/03008207409152096
BLUM, B.; BEIER, H.; GROSS, H.J. Improved silver staining of plant proteins, RNA in polyacrylamide gels. Electrophoresis, v. 8, n. 1, p. 93-99, 1987. DOI: https://doi.org/10.1002/elps.1150080203
BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein dye binding. Analytical Biochemistry, v. 72, n. 3, p. 248-254, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
BULLOUGH, P.G. et al. Topographical variation in the morphology and biochemistry of adult canine tibial plateau articular cartilage. Journal Orthopaedical Research, v. 3, n.1, p. 1-16, 1985. DOI: https://doi.org/10.1002/jor.1100030101
BUSCHMANN, M.D. et al. Chondrocytes in agarose culture synthetize a mechanically functional extracellular matrix. Journal Orthopaedical Research, v. 10, n. 7, p. 745-758, 1992. DOI: https://doi.org/10.1002/jor.1100100602
CATERSON, B.; LOWTHER, D.A. Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochemica Biophysica Acta, v. 540, n.2, p. 412-422, 1978. DOI: https://doi.org/10.1016/0304-4165(78)90171-X
CHOI, H.V. et al. Characterization of dermatan sulfate proteoglycans, DS-PG I DS-PG II, from bovine articular cartilage and skin isolated by octyl-sepharose cromatography. Journal Biological Chemistry, v. 264, n. 4, p. 2876-2884, 1989. DOI: https://doi.org/10.1016/S0021-9258(19)81694-0
COTTA, H.; PUHL, W. The pathophysiology of damage to articular cartilage. In: The Knee, edited by HASTINGS, D.E., Springer, Berlim, 1978.
DIETRICH, C.P.; DIETRICH, S.M.C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, v. 70, n. 4, p. 645-647, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90496-6
DISCHE, Z. A new specific color reaction of hexuronic acids. Journal Biological Chemistry, v. 167, n. 1, p. 189-199, 1947. DOI: https://doi.org/10.1016/S0021-9258(17)35155-4
ESQUISATTO, M.A.M.; PIMENTEL, E.R.; GOMES, L. Extracellular matrix composition of different regions of knee joint cartilage in catlle. Annals of Anatomy, v. 179, n.7, p. 433 – 437, 1997. DOI: https://doi.org/10.1016/S0940-9602(97)80044-1
FARNDALE, R.W.; BUTTLE, D.J.; BARRET, A.J. Improved quantitation and discrimination of sulphated glyocosaminoglycans by use of dimethylmethylene blue. Biochemica Biophysica Acta, v. 883, n. 1, 1986. DOI: https://doi.org/10.1016/0304-4165(86)90306-5
FISCHER, L. W. et al. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral component of developing human bone. Journal Biological Chemistry, v. 262, n. 4, p. 702-708, 1987. DOI: https://doi.org/10.1016/S0021-9258(18)47991-4
FREEMAN, M.A.R.; SWANSON, S.H.V.; MANLEY, P.T. Stress-lowering function of articular cartilage. Medical and Biological Engineering, v. 7, n. 2, p. 245-251, 1975. DOI: https://doi.org/10.1007/BF02477735
GOMES, L.; PIMENTEL, E.R. Detection of small proteoglycans present in xiphoid cartilage regions submitted to different biomechanical forces. Brazilian Journal of Medical and Biological Research, v. 27, n. 12, p. 2117-2124, 1994.
GOMES, L. et al. Is there a relationship between the state of aggregation of small proteoglycans and the biomechanical properties of tissue? Brazilian Journal of Medical and Biological Research, v. 29, n. 8, p. 1243-1246, 1996.
KEMPSON, G. The mechanical properties of articular cartilage. In: The Joints and Synovial Fluid, edited by Sokoloff, L. Academic Press, New York, 1979 DOI: https://doi.org/10.1016/B978-0-12-655102-0.50011-4
KRUSSIUS, T.; RUOLATHI, E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proceedings of National Academy of Sciences USA, v. 87, n. 3, p. 683-687, 1986.
HAYES, W.C.; BODINE, A.J. Flow-independent viscoelastic properties of articular cartilage matrix. Journal of Biomechanics, v. 11, n. 3, p. 407-419, 1978. DOI: https://doi.org/10.1016/0021-9290(78)90075-1
HEDBON, E.; HEINEGÅRD, D. Interaction of a 59 kDa connective tissue matrix protein with collagen I and collagen II. Journal Biological Chemistry, v. 264, n. 12, p. 6898-6905, 1989. DOI: https://doi.org/10.1016/S0021-9258(18)83516-5
HEINEGÅRD, D.; OLDBERG, A. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. Faseb Journal, v. 3, n. 6, p. 2042-2051, 1989. DOI: https://doi.org/10.1096/fasebj.3.9.2663581
HEINEGÅRD, D.; PAULSSON, M. Cartilage. Methods in Enzymology, v. 145, n. 1, p. 336-363, 1987. DOI: https://doi.org/10.1016/0076-6879(87)45020-9
HEISE, N.; TOLEDO, O.M.S. Age-related changes in glycosaminoglycan distribution in different anatomical sites on the surface of knee-joint articular cartilage in young rabbits. Annals of Anatomy, v. 175, n. 1, p. 35-40, 1993. DOI: https://doi.org/10.1016/S0940-9602(11)80234-7
HILDEBRAND, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor . Biochemical Journal, v. 302, n. 3, p. 527-534, 1994. DOI: https://doi.org/10.1042/bj3020527
KIM, Y.J. et al. Mechanical regulation of cartilage biosynthethtic behavior: physical stimuli. Archives in Biochemistry and Biophysics, v. 311, n. 1, 1994. DOI: https://doi.org/10.1006/abbi.1994.1201
KIVIRANTA I, et al. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis and Rheumatism, v. 30, n.5, p. 801-809, 1987. DOI: https://doi.org/10.1002/art.1780300710
KIVIRANTA, I. et al. Moderate running execise auments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. Journal Orthopaedical Research, v. 6, n. 2, p. 188-195, 1988. DOI: https://doi.org/10.1002/jor.1100060205
KIVIRANTA, I. et al. Effect of motion and load on articular cartilage in animal models In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
LAMMI, M.J. et al. Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochemical Journal, v. 304, n.7, p. 723-730, 1994. DOI: https://doi.org/10.1042/bj3040723
MAQUET, P.G.; VAN DER BERG, A.J.; SIMONET, J.C. Femorotibial weight beaing areas. Journal of Bone and Joint Surgery – American, v. 57, n. 5, p. 766-771, 1975. DOI: https://doi.org/10.2106/00004623-197557060-00005
MANICOURT, D.H. et al. Characterization of the proteoglycans recovered under nondissociative conditions from normal articular cartilage of rabbits and dogs. Journal Biological Chemistry, v. 261, n. 12, p. 5426-5433, 1986. DOI: https://doi.org/10.1016/S0021-9258(19)57233-7
MITCHELL, D.; HARDINGHAM, T. The effects of cycloheximide on the biosynthesis and secretional proteoglycans by chondrocytes in cultures. Biochemical Journal, v. 196, n. 5, p. 521-529, 1985. DOI: https://doi.org/10.1042/bj1960521
MOURÃO, P.A.S. Proteoglycans, glycosaminoglycans and sulfated polysaccharides from connective tissues. Memórias do Instituto Oswaldo Cruz, v. 86, n. 1, p. 13-22, 1991. DOI: https://doi.org/10.1590/S0074-02761991000700003
MOCKENHAUPT, J. Pressure distribution in partly contracting joints a computarized simulation model. Anatomischer Anzeiger, v. 171, n.3, p. 313-321, 1990.
MUIR, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays, v. 17, n. 12, p. 1039-1048, 1995. DOI: https://doi.org/10.1002/bies.950171208
PALMOSKI, M.J.; BRANDT, K.D. Effects of static and cyclic compressive forces on articular cartilage plugs in vitro. Arthritis and Rheumatism, v. 27, n. 5, p. 675-681, 1984. DOI: https://doi.org/10.1002/art.1780270611
PARKKINEN, J.J. et al. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. Journal Biological Chemistry, v. 10, n. 4, p. 610-620, 1992. DOI: https://doi.org/10.1002/jor.1100100503
PARKKINEN, J.J. et al. Effects of cyclic hydostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Archives of Biochemistry and Biophysics, v. 300, n. 6, p. 458-465, 1993. DOI: https://doi.org/10.1006/abbi.1993.1062
REFIOR, H.J.; HACKENBROCH, M.H. The reaction of articular cartilage to pressure, immobilization and distraction. In: The Knee, edited by HASTINGS, D.E. Springer, Berlin, 1978.
ROSENBERG, L.C. et al. Proteoglycans from bovine proximal humeral articular cartilage. Structural basis for the polydispersity of proteoglycan subunit. Journal Biological Chemistry, v. 251, n.11, p. 6439-6444, 1976. DOI: https://doi.org/10.1016/S0021-9258(20)81880-8
ROSENBERG, L.C. Structure and function of dermatan sulfate proteoglycans in articular cartilage. In: Articular Cartilage and Osteoarthritis, edited by KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. Raven Press, New York, 1992.
ROSENBERG, L.C. et al. Isolation of dermatan sulphate from mature bovine articular cartilage. Journal Biological Chemistry, v. 260, n.11, p. 6304-6313, 1995. DOI: https://doi.org/10.1016/S0021-9258(18)88971-2
ROUGLHEY, P.J.; WHITE, R.J. Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II. Biochemical Journal, v. 162, n. 8, p. 823-827, 1989. DOI: https://doi.org/10.1042/bj2620823
SAH, R.L.Y. et al. Biosynthetic response of cartilage explants to dynamic compression. Journal Orthopaedical Research, v. 7, n. 6, p. 619-636, 1989. DOI: https://doi.org/10.1002/jor.1100070502
SALTER, R.R. et al. The biological effects of continuos passive motion on the healing of full-thickness defects in articular cartilage. Journal of Bone and Joint Surgery – American, v. 62, n.10, p. 1232-1251, 1980. DOI: https://doi.org/10.2106/00004623-198062080-00002
SIMON, W.H. Scale effects in animal joints. I. Articular cartilage thickness and compressive stress. Arthritis and Rheumatism, v. 13, n. 2, p. 244-255, 1970. DOI: https://doi.org/10.1002/art.1780130305
SOMMARIN, Y.; LARSON, T.; HEINEGÅRD, D. Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Experimental Cell Research, v. 184, n.1, p. 181-192, 1989.STRIDER, W.; PAL, S.; ROSENBERG, L. Comparison of proteoglycan from bovine articular cartilage Journal Biological Chemistry, v. 254, n. 5, p. 945-954, 1975. DOI: https://doi.org/10.1016/0014-4827(89)90376-5
SWANN, D.A., POWELL, S., SOTMAN, S. The heterogeneity of cartilage proteoglycans. Isolation of different types of proteoglycans from bovine articular cartilage. Journal Biological Chemistry, v. 254, n. 4, p. 945-954, 1979. DOI: https://doi.org/10.1016/S0021-9258(17)37896-1
TAMMI, M. et al. Joint induced alteration in articular cartilage. In: Joint Loading: Biology and Health of Articular Strucutres, edited by HELMINEN, H.J.; KIVIRANTA, I.; TAMMI, M.; SÄÄMÄNEN, A-M.; PAULLONEN, K; JURVELIN, J. John Wright (Butterworth), Bristol, England, 1987.
VENN, M.F. Chemical composition of human femoral head cartilage. Influence of topographical position and fibrilation. Annals of Rheumatic Diseases, v. 38, n. 1, p. 57-62, 1979. DOI: https://doi.org/10.1136/ard.38.1.57
YAMAGUCHI, Y.; MANN, D.M.; RUOSLATHI, E. Negative regulation of transforming growth factor by the proteoglycan decorin. Nature, v. 336, n. 2, p. 281-284, 1990. DOI: https://doi.org/10.1038/346281a0
ZAMBETTI, G. et al. Subcellular localization of histone messenger RNAs on cytoskeleton-associated free polyssomes in Hela S3 cells. Journal Cell Physiology, v. 125, n. 3, p. 345-353, 1985. DOI: https://doi.org/10.1002/jcp.1041250225
ZINGALES, B. (1994). Analysis of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In: Genes and Antigens of Parasites, edited by MOREL, C.M., Fiocruz, Rio de Janeiro.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 teste
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).