Image enhancement techniques for highlighting brain tumors in magnetic resonance imaging
DOI:
https://doi.org/10.24933/rep.v8i1.359Keywords:
histogram equalization, contrast improvement, CLAHE, BCETAbstract
The technology integration across many fields of human knowledge, particularly the intersection of medicine and computer science, made possible the implementation and contribution to procedures related to medical imaging acquisition and medical treatments. This has resulted in the enhancement of medical practices and, consequently, in the overall health condition of patients. However, obtaining images, such as magnetic resonance imaging, unveils several challenges, including noise, distortions, and others images characteristics that can influence the medical assessment. In order to relieve these issues, this paper presents an application that receives magnetic resonance images containing patients with and without brain tumors. Subsequently, contrast enhancement methods such as CLAHE (Contrast Limited Adaptive Histogram Equalization), BCET (Balance contrast enhancement technique), and histogram equalization are applied. The advantages and disadvantages of each method are discussed, and the evaluation is explored through the interpretation of histograms from the resulting algorithm-generated images. In conclusion, it is found that CLAHE outperformed the other techniques, effectively highlighting tumors in the images and emphasizing other crucial regions for patient diagnosis.
Downloads
References
Alain H, Djemel Z. Image quality metrics: PSNR vs. SSIM. International Conference on Pattern Recognition, 2358 - 2369, 2010.
Bhuvaji S, Kadam A, Bhumkar P, Dedge S. Brain Tumor Classification MRI. Kaggle.
Disponível em:
<https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri>. Acesso em:
de aug de 2023.
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray
F (2020). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency
for Research on Cancer. Disponível em:
<https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact-sheet.
pdf>. Acesso em: 18 aug. 2023.
GONZALEZ, Rafael; WOODS, Richard. Digital Imaging Processing. 4. ed. New York: Pearson Education, 2018. 1168 p.
LIU JIAN GUO. Balance contrast enhancement technique and its application in image colour composition. International Journal of Remote Sensing, 12:10, 2133-2151, 1991. DOI: https://doi.org/10.1080/01431169108955241
MACHADO, Angelo; HAERTEL, Lucia Machado. Neuroanatomia funcional. 3. ed. São Paulo: Atheneu, 2013.
OpenCV. Histograms - 2: Histogram Equalization. Disponível em:
<https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html>. Acesso em: 7
out. 2023.
Rajamani V., Babu. P, S.Jaiganesh. A Review of Various Global Contrast Enhancement
Techniques for Still Images using Histogram Modification Framework. International
Journal of Engineering Trends and Technology (IJETT), 1045-1048, 2013.
Senthilkumaran N, Thimmiaraja J. Histogram Equalization for Image Enhancement Using MRI brain images. World Congress on Computing and Communication Technologies, 80-89, 2014. DOI: https://doi.org/10.1109/WCCCT.2014.45
Sonali, Sima Sahu, Amit Kumar Singh, S.P. Ghrera, Mohamed Elhoseny. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology, 110, 87-98, 2018. DOI: https://doi.org/10.1016/j.optlastec.2018.06.061
Stephen M. Pizer, E.Philip Arburn, John D. Austin, Robert Cromartie, Ari Geselowitz, Trey Greer,Bart Ter Haar Romeny, John B. Zimmerman, Karel Zuiderveld. Adaptive Histogram Equalization and Its Variations. COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING, 39, 355-368, 1987. DOI: https://doi.org/10.1016/S0734-189X(87)80186-X
Tawsifur Rahman, Amith Khandakar, Yazan Qiblawey, Anas Tahir, Serkan Kiranyaz, Saad Bin Abul Kashem, Mohammad Tariqul Islam, Somaya Al Maadeed, Susu M. Zughaier, Muhammad Salman Khan , Muhammad E.H. Chowdhury. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, 2021. DOI: https://doi.org/10.1016/j.compbiomed.2021.104319
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 teste
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).