Restrição nutricional gestacional altera a organização da glândula adrenal em ratas
DOI:
https://doi.org/10.24933/rep.v7i1.296Palavras-chave:
Restrição calórica, Restrição proteica, Gravidez, Adrenal, Receptores de glicocorticóides/mineralocorticóidesResumo
A má nutrição durante a gravidez causa adaptação metabólica e/ou estrutural permanente na prole. A glândula adrenal produz vários hormônios esteróides durante a gravidez. Assim, este estudo teve como objetivo avaliar a influência da dieta durante a gestação sobre as glândulas adrenais de ratas Wistar. Para isso, ratas Wistar prenhes de 10 semanas (p, n=15) e ratas não prenhes (np, n=15) foram divididas em três grupos e receberam dieta controle normoproteica (C, 17% de caseína, n=5), dieta hipocalórica isocalórica (PR, 6% de caseína, n=5) e 50% de restrição calórica (RC, 50% da dieta consumida pelo grupo C), durante um período de 21 dias. No 21º dia de gestação (grupos 21dG, p) ou no 21º dia de dieta (grupos np), após aprofundamento anestésico, a glândula adrenal direita foi coletada, pesada (massa total) e preparada para inclusão em Paraplast® para exame histomorfométrico e análise imuno-histoquímica (Ki-67, receptores de glicocorticóides (GR) e receptor de mineralocorticóide (MR)) nas diferentes áreas da glândula. Os dados, expressos como média ± DP, foram avaliados por análise de variância unidirecional com pós-teste de Tukey (p < 0,05). CR na gravidez aumentou a quantidade de receptores GR, MR e Ki-67 na glândula adrenal. O grupo npRC apresentou maior reatividade de GR em comparação com os animais que receberam uma dieta normal. A restrição proteica na gravidez diminui a RM adrenal. Os resultados permitiram concluir que, mesmo sem alterar o peso das glândulas adrenais, o grupo pRC foi o que mais sofreu estresse durante o estudo, sugerindo que a RC associada à gravidez pode causar alterações morfofuncionais nas glândulas adrenais.
Downloads
Referências
AL-REGAIEY, K.A. The effects of calorie restriction on aging: a brief review. European Review for Medical and Pharmacological Sciences, v. 20, n. 11, p. 2468-2473, 2016.
ASSER, L. et al. Autocrine positive regulatory feedback of glucocorticoid secretion: glucocorticoid receptor directly impacts h295r human adrenocortical cell function. Molecular and Cellular Endocrinology, v. 395, n. 1-2, p. 1-9, 2014. DOI: https://doi.org/10.1016/j.mce.2014.07.012
BAGHERNIYA, M. et al. The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Research Reviews, v. 47, n. 1, p. 183-197, 2018. DOI: https://doi.org/10.1016/j.arr.2018.08.004
BARKER, D.J. Fetal programming of coronary heart disease. Cell Press, v. 13, n. 9, p. 364-368, 2002. DOI: https://doi.org/10.1016/S1043-2760(02)00689-6
BELL, R.C. et al. Natural killer cell activity and tumorigenesis in animals fed low protein diets. The Faseb Journal, v. 4, n. 4, p. A1043, 1990.
BERTRAM, C. et al. The Maternal Diet during Pregnancy Programs Altered Expression of the Glucocorticoid Receptor and Type 2 11β-Hydroxysteroid Dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology, v. 142, n. 7, p. 2841-2853, 2001. DOI: https://doi.org/10.1210/endo.142.7.8238
BOULKROUN, S. et al. Adrenal Cortex Remodeling and Functional Zona Glomerulosa Hyperplasia in Primary Aldosteronism. Hypertension, v. 56, n. 5, p. 885-892, 2010. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.110.158543
BOUTWELL, B.K.; BRUSH, M.K.; RUSCH, H.P. Some physiological effects associated with chronic caloric restriction. American Journal of Physiology-Legacy Content, v. 154, n. 3, p. 517-524, 1948. DOI: https://doi.org/10.1152/ajplegacy.1948.154.3.517
BRIASSOULIS, G. et al. The Glucocorticoid Receptor and its Expression in the Anterior Pituitary and the Adrenal Cortex: a source of variation in hypothalamic-pituitary-adrenal axis function; implications for pituitary and adrenal tumors. Endocrine Practice, v. 17, n. 6, p. 941-948, 2011. DOI: https://doi.org/10.4158/EP11061.RA
BRUSS, M.D. et al. The effects of physiological adaptations to calorie restriction on global cell proliferation rates. American Journal of Physiology-Endocrinology and Metabolism v. 300, n. 4, p. 735-745, 2011. DOI: https://doi.org/10.1152/ajpendo.00661.2010
CARSIA, R.V.; MALAMED, S. Acute Self-Suppression of Corticosteroidogenesis in Isolated Adrenocortical Cells. Endocrinology, v. 105, n. 4, p. 911-914, 1979. DOI: https://doi.org/10.1210/endo-105-4-911
CHANGO, A.; POGRIBNY, I. (2015) Considering Maternal Dietary Modulators for Epigenetic Regulation and Programming of the Fetal Epigenome. Nutrients, v. 7, n. 4, p. 2748-2770, 2015. DOI: https://doi.org/10.3390/nu7042748
CHONG, C. et al. Regulation of aldosterone secretion by mineralocorticoid receptor–mediated signaling. Journal of Endocrinology, v. 232, n. 3, p. 525-534, 2017. DOI: https://doi.org/10.1530/JOE-16-0452
COTTRELL, E.C. et al. Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. The Faseb Journal, v. 26, n. 5, p. 1866-1874, 2012. DOI: https://doi.org/10.1096/fj.12-203489
DUNN, T.B. Normal and Pathologic Anatomy of the Adrenal Gland of the Mouse, Including Neoplasms. Journal of the National Cancer Institute, v. 44, n. 6, p. 1323-1389, 1970.
DUTRIEZ-CASTELOOT, I. et al. Tissue-specific Programming Expression of Glucocorticoid Receptors and 11β-HSDs by Maternal Perinatal Undernutrition in the HPA Axis of Adult Male Rats. Hormone and Metabolic Research, v. 40, n. 4, p. 257-261, 2008. DOI: https://doi.org/10.1055/s-2008-1058064
ELEFTHERIADES, M.; CREATSAS, G.; NICOLAIDES, K. Fetal Growth Restriction and Postnatal Development. Annals of The New York Academy of Sciences, v. 1092, n. 1, p. 319-330, 2006. DOI: https://doi.org/10.1196/annals.1365.047
ENNEN, W.B.; LEVAY-YOUNG, B.K.; ENGELAND, W.C. Zone-specific cell proliferation during adrenocortical regeneration after enucleation in rats. American Journal of Physiology-Endocrinology and Metabolism, v. 289, n. 5, p. 883-891, 2005. DOI: https://doi.org/10.1152/ajpendo.00031.2005
GAO, H.; YALLAMPALLI, U.; YALLAMPALLI, C. Protein Restriction to Pregnant Rats Increases the Plasma Levels of Angiotensin II and Expression of Angiotensin II Receptors in Uterine Arteries. Biology of Reproduction, v. 86, n. 3, p. 1-8, 2012. DOI: https://doi.org/10.1095/biolreprod.111.095844
GIANCHINI, F.R.C. et al. Maternal diabetes affects specific extracellular matrix components during placentation. Journal of Anatomy, v. 212, n. 1, p. 31-41, 2007. DOI: https://doi.org/10.1111/j.1469-7580.2007.00839.x
GJERSTAD, J.K.; LIGHTMAN, S.L.; SPIGA, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress, v. 21, n. 5, p. 403-416, 2018. DOI: https://doi.org/10.1080/10253890.2018.1470238
GOMEZ‐SANCHEZ, E.; GOMEZ‐SANCHEZ, C.E. The Multifaceted Mineralocorticoid Receptor. Comprehensive Physiology, v. 4, n. 3, p. 965-994, 2014. DOI: https://doi.org/10.1002/cphy.c130044
GONZÁLEZ, A.C.O. et al. Wound healing - A literature review. Anais Brasileiros de Dermatologia, v. 91, n. 5, p. 614-620, 2016. DOI: https://doi.org/10.1590/abd1806-4841.20164741
HARDY, R.; COOPER, M.S. Adrenal gland and bone. Archives of Biochemistry and Biophysics, v. 503, n. 1, p. 137-145, 2010. DOI: https://doi.org/10.1016/j.abb.2010.06.007
HAWRYLEWICZ, E.J. et al. Enhancement of 7,12-dimethylbenz[a]anthracene (DMBA) mammary tumorigenesis by high dietary protein in rats. Nutrition Reports International, v. 26, n. 5, p. 793-806, 1982.
HILL, P.A. et al. Functional and morphologic studies of the adrenal cortex and kidney in ovine toxaemia of pregnancy. The Journal of Pathology, v. 144, n. 1, p. 1-13, 1984. DOI: https://doi.org/10.1002/path.1711440102
HSIEH, E.A. et al. Dynamics of Keratinocytes in Vivo using 2H2O Labeling: a sensitive marker of epidermal proliferation state. Journal of Investigative Dermatology, v.123, n. 3, p. 530-536, 2004. DOI: https://doi.org/10.1111/j.0022-202X.2004.23303.x
HUSEBY, R.A.; BALL, Z.B.; VISSCHER, M.B. Further observations on the influence of simple caloric restriction on mammary cancer incidence and related phenomena in C3H mice. American Association for Cancer Research, v. 5, n. 1, p. 40-46, 1945.
INOMATA, A.; SASANO, H. (2015) Practical approaches for evaluating adrenal toxicity in nonclinical safety assessment. Journal of Toxicologic Pathology, v. 28, n. 3, p. 125-132, 2015. DOI: https://doi.org/10.1293/tox.2015-0025
IWAMURA, H. et al. Caloric restriction reduces basal cell proliferation and results in the deterioration of neuroepithelial regeneration following olfactotoxic mucosal damage in mouse olfactory mucosa. Cell and Tissue Research, v. 378, n. 2, p. 175-193, 2019. DOI: https://doi.org/10.1007/s00441-019-03047-1
JOSE, D.G.; GOOD, R.A. Quantitative effects of nutritional essential amino acid deficiency upon immune responses to tumors in mice. Journal of Experimental Medicine 137(1): 1-9, 1973. DOI: https://doi.org/10.1084/jem.137.1.1
KANCZKOWSKI, W.; SUE, M.; BORNSTEIN, S.R. (2017) The adrenal gland microenvironment in health, disease and during regeneration. Hormones, v. 13, n. 3, p. 251-265, 2017. DOI: https://doi.org/10.1007/BF03401519
KHORRAM, N.M. et al. Maternal Undernutrition Programs Offspring Adrenal Expression of Steroidogenic Enzymes. Reproductive Sciences, v. 18, n. 10, p. 931-940, 2011. DOI: https://doi.org/10.1177/1933719111404613
KING, J.C. Physiology of pregnancy and nutrient metabolism. The American Journal of Clinical Nutrition, v. 71, n. 5, p. 1218-1225, 2000. DOI: https://doi.org/10.1093/ajcn/71.5.1218s
KRIEGER, E.; YOUNGMAN, L.D.; CAMPBELL, T.C. The modulation of aflatoxin B1 (AFB1)-induced preneoplastic lesions by dietary protein and voluntary exercise in Fischer 344 rats. The Faseb Journal v. 2, n. 4, p. 3304, 1988.
KRITCHEVSKY, D. Caloric Restriction and Cancer. Journal of Nutritional Science and Vitaminology, v. 47, n. 1, p. 13-19, 2001. DOI: https://doi.org/10.3177/jnsv.47.13
KUMAR, S. et al. Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neuroscience Research, v. 65, n. 4, p. 367-374, 2009. DOI: https://doi.org/10.1016/j.neures.2009.08.015
LAMMI-KEEFE, C.J.; SWAN, P.B.; HEGARTY, P.V. Effect of Level of Dietary Protein and Total or Partial Starvation on Catalase and Superoxide Dismutase Activity in Cardiac and Skeletal Muscles in Young Rats. The Journal of Nutrition, v. 114, n. 12, p. 2235-2240, 1984. DOI: https://doi.org/10.1093/jn/114.12.2235
LANDINI, G.; MARTINELLI, G.; PICCININI, F. Colour deconvolution: stain unmixing in histological imaging. Bioinformatics, v. 37, n. 10, p. 1485-1487, 2020. DOI: https://doi.org/10.1093/bioinformatics/btaa847
LAPERLE, K.M.D.; DINTZIS, S.M. Endocrine System. Comparative Anatomy and Histology. Elsevier, Netherlands, 2018. DOI: https://doi.org/10.1016/B978-0-12-802900-8.00015-4
LÉONHARDT, M. et al. Perinatal Maternal Food Restriction Induces Alterations in Hypothalamo-Pituitary-Adrenal Axis Activity and in Plasma Corticosterone-Binding Globulin Capacity of Weaning Rat Pups. Neuroendocrinology, v. 75, n. 1, p. 45-54, 2002. DOI: https://doi.org/10.1159/000048220
LIANG, H.; ZHANG, J.; ZHANG, Z. Food restriction in pregnant rat-like hamsters (Cricetulus triton) affects endocrine, immune function and odor attractiveness of male offspring. Physiology and Behavior, v. 82, n. 2-3, p. 453-458, 2004. DOI: https://doi.org/10.1016/j.physbeh.2004.04.008
LOK, E. et al. Calorie restriction and cellular proliferation in various tissues of the female Swiss Webster mouse. Cancer Letters, v. 51, n. 1, p. 67-73, 1990. DOI: https://doi.org/10.1016/0304-3835(90)90232-M
LOOSE, D.S. et al. Demonstration of Glucocorticoid Receptors in the Adrenal Cortex: evidence for a direct dexamethasone suppressive effect on the rat adrenal gland. Endocrinology, v. 107, n. 1, p. 137-146, 1980. DOI: https://doi.org/10.1210/endo-107-1-137
MIRZAEI, H.; RAYNES, R.; LONGO, V.D. The conserved role of protein restriction in aging and disease. Current Opinion in Clinical Nutrition and Metabolic Care, v. 19, n. 1, p. 74-79, 2016. DOI: https://doi.org/10.1097/MCO.0000000000000239
PARK, J.H. et al. Calorie restriction alleviates the age-related decrease in neural progenitor cell division in the aging brain. European Journal of Neuroscience, v. 37, n. 12, p. 1987-1993, 2013. DOI: https://doi.org/10.1111/ejn.12249
PAUST, H.J. et al. Expression of the Glucocorticoid Receptor in the Human Adrenal Cortex. Experimental and Clinical Endocrinology & Diabetes, v. 114, n. 1, p. 6-10, 2006. DOI: https://doi.org/10.1055/s-2005-873007
PEREIRA, S.S. et al. Mineralocorticoid Receptor Antagonists Eplerenone and Spironolactone Modify Adrenal Cortex Morphology and Physiology. Biomedicines, v. 9, n. 4, p. A441, 2021. DOI: https://doi.org/10.3390/biomedicines9040441
PÉRON, F.G. et al. Studies on the possible inhibitory effect of corticosterone on corticosteroidogenesis at the adrenal level in the rat. Endocrinology, v. 67, n. 3, p. 379-388, 1960. DOI: https://doi.org/10.1210/endo-67-3-379
POHANK, D.G.; PIKE, R.L. Effects of dietary sodium restriction during pregnancy on the histochemistry of the rat zona glomerulosa. Experimental Biology and Medicine, v. 133, n. 1, p. 246-251, 1970. DOI: https://doi.org/10.3181/00379727-133-34448
RECABARREN, M.P.; VALENZUELA, G.J.; SERON-FERRER, M. Protein-caloric restriction during pregnancy affects the adrenal-placental axis and decreases newborn weight in a primate, the Cebus apella. Prenatal and Neonatal Medicine, v. 3, n. 3, p. 309-313, 1997. DOI: https://doi.org/10.1016/S0002-9378(97)80632-1
ROSENBROCK, H. et al. Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Brain Research, v. 1040, n. 1-2, p. 55-63, 2005. DOI: https://doi.org/10.1016/j.brainres.2005.01.065
SAITO, E. et al. Inhibitory Effects of Corticosterone on Cell Proliferation and Steroidogenesis in the Mouse Adrenal Tumor Cell Line Y-l. Endocrinology v. 104, n. 2, p. 487-492, 1979. DOI: https://doi.org/10.1210/endo-104-2-487
SILVERTHORN, D.U. Fisiologia Humana: Uma Abordagem Integrada. 5. ed. Porto Alegre: Artmed, 2010.
SPIGA, F. et al. Dynamic responses of the adrenal steroidogenic regulatory network. Proceedings of the National Academy of Sciences, v. 114, n. 31, p. 1-9, 2017. DOI: https://doi.org/10.1073/pnas.1703779114
TERPSTRA, A.H.M.; HARKES, L.; VAN DER VEEN, F.H. The effect of different proportions of casein in semipurified diets on the concentration of serum cholesterol and the lipoprotein composition in rabbits. Lipids, v. 16, n. 2, p. 114-119, 1981. DOI: https://doi.org/10.1007/BF02535684
THIELE K, DIAO L, ARCK PC (2017) Immunometabolism, pregnancy, and nutrition. Seminars in Immunopathology, v. 40, n. 2, p. 157-174, 2017 DOI: https://doi.org/10.1007/s00281-017-0660-y
VALSAMAKIS, G.; CHROUSOS, G.; MASTORAKOS, G. Stress, female reproduction and pregnancy. Psychoneuroendocrinology, v. 100, n. 1, p. 48-57, 2019. DOI: https://doi.org/10.1016/j.psyneuen.2018.09.031
YOUNGMAN, L.D. Recall, memory, persistence, and the sequential modulation of preneoplastic lesion development by dietary protein. New York: Cornell University Press, 1997.
YOUNGMAN, L.D. Protein restriction (PR) and caloric restriction (CR) compared: effects on DNA damage, carcinogenesis, and oxidative damage. Mutation Research, v. 295, n. 4-, p. 165-179, 1993. DOI: https://doi.org/10.1016/0921-8734(93)90018-X
YOUNGMAN, L.D.; CAMPBELL, T.C. The sustained development of preneoplastic lesions depends on high protein intake. Nutrition and Cancer, v. 18, n. 2, p. 131-142, 1992. DOI: https://doi.org/10.1080/01635589209514213
YOUNGMAN, L.D.; PARK, J.Y.; AMES, B.N. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proceedings of the National Academy of Sciences, v. 89, n. 19, p. 9112-9116, 1992. DOI: https://doi.org/10.1073/pnas.89.19.9112
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 teste
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).