TOPOGRAPHIC VARIATION OF THE PROTEOGLYCAN POPULATION IN TWO DIFFERENT REGIONS OF CHICKEN TARSOMETARSAL CARTILAGE
DOI:
https://doi.org/10.24933/rep.v8i1.317Keywords:
Tecido conjuntivo; glicosaminoglicanos; variação anatômica.Abstract
The structural organization and distribution of proteoglycans in the extracellular matrix of the articular cartilage of young adult chickens were analyzed using samples from the lateral and medial surfaces of the tarsometatarsus. For structural analysis, the sections were stained with Alcian Blue and Xylidine-ponceau and analyzed by bright field and polarized light microscopies. For biochemical analysis, the components of the extracellular matrix were extracted with 4M guanidine hydrochloride, dosage, fractionated by gel filtration and ionic Exchange chromatographies and analyzed by electrophoresis on agarose, agarose-polyacrylamide and polyacrylamide supports. The structural analysis showed that the collagen fibrils were arranged transversally on the periphery of the two regions. The central area of the lateral region showed more intense reactivity to Alcian Blue. The uronic acid content of the lateral region was higher than the medial region. Analysis of glycosaminoglycans in agarose gels revealed the presence of only chondroitin sulfate. This showed no differences in relation to chain size. Analysis of large proteoglycans revealed larger molecules in the medial region. The electrophoretic bands corresponding to Mr of 230, 220, 180 and 59 kDa showed reactivity for Fibormodulim in both regions. The electrophoretic band corresponding to 75kDa showed reactivity for Decorim in both regions. The changes observed regarding tissue metachromasia and distribution of proteoglycans between the regions of the tarsometatarsal cartilage may be related to differences in the distribution of mechanical forces on the articular surface.
Downloads
References
BARNETT, C.H. A comparison of the human knee and avian ankle. Journal of Anatomy, v. 88, n. 1, p. 59 -70, 1954.
BLUM, B.; BEIER, H.; GROSS, H.J. Improved silver staining of plant proteins, RNA in polyacrylamide gels. Electrophoresis, v. 8, n. 1, p. 93-99, 1987. DOI: https://doi.org/10.1002/elps.1150080203
BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein dye binding. Analytical Biochemistry, v. 72, n. 3, p. 248-254, 1976. DOI: https://doi.org/10.1006/abio.1976.9999
CAMILA B. CARBALLO, C. B.; NAKAGAWA, Y.; SEKIYA, I.; RODEO, S. A. Basic Science of Articular Cartilage. Clinics in Sports Medicine, v. 36, n. 3, p. 413-425, 2017. DOI: https://doi.org/10.1016/j.csm.2017.02.001
CHEN, C.; TAMBE, D. T.; DENG, L.; YANG, L. Biomechanical properties and mechanobiology of the articular chondrocyte. American Journal of Physiology, v. 305, n. 12, p.1202 – 1208, 2013. DOI: https://doi.org/10.1152/ajpcell.00242.2013
DIETRICH, C.P.; DIETRICH, S.M.C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, v. 70, n. 4, p. 645-647, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90496-6
DISCHE, Z. A new specific color reaction of hexuronic acids. Journal Biological Chemistry, v. 167, n. 1, p. 189-199, 1947. DOI: https://doi.org/10.1016/S0021-9258(17)35155-4
EGGLI, P.S.; HUNZIKER, E.B.; SCHENK, R.K. Quantification of structural features characterizing weight- and less- weigth-bearing ergions in articular cartilage: a steriological analysis of medical femoral condyles in young rabbits. Anatomical Records, v. 222, n. 3, p. 217-227, 1988. DOI: https://doi.org/10.1002/ar.1092220302
ESQUISATTO, M.A.M.; PIMENTEL, E.R.; GOMES, L. Extracellular matrix composition of different regions of knee joint cartilage in cattle. Annals of Anatomy, v. 179, n.7, p. 433 – 437, 1997. DOI: https://doi.org/10.1016/S0940-9602(97)80044-1
ESQUISATTO, M. A. M.; CONTRICIANI, R. E.; PIMENTEL, E. R.; GOMES, L. População de proteoglicanos em diferentes sítios anatômicos da cartilagem articular do joelho bovino. Ensaios Pioneiros, v. 7, n.1, p. 73 -89, 2023. DOI: https://doi.org/10.24933/rep.v7i1.301
FARNDALE, R.W.; BUTTLE, D.J.; BARRET, A.J. Improved quantitation and discrimination of sulphated glyocosaminoglycans by use of dimethylmethylene blue. Biochemica Biophysica Acta, v. 883, n. 2, p. 173-177, 1986. DOI: https://doi.org/10.1016/0304-4165(86)90306-5
GOLDRING, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice & Research Clinical Rheumatology, v. 20, n. 5, p. 1003 – 1025, 2006. DOI: https://doi.org/10.1016/j.berh.2006.06.003
GOMES, L.; ESQUISATTO, M.A.M.; BELLINE, P.; PIMENTEL, E.R. Is there a relationship between the state of aggregation of small proteoglycans and the biomechanical properties of tissues? Brazilian Journal of Medical and Biological Research, v. 29, n. 10, p. 1243-1246, 1996.
HALL, A.C.; URBAN, J.P.G.; GEHL, K.A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. Journal Orthopaedical Research, v. 9, n. 1, p. 1-10, 1991. DOI: https://doi.org/10.1002/jor.1100090102
JURVELIN, J.; HELMINEN, H. J.; LAURITSALO, S. Influences of joint immobilization and running exercise on articular cartilage surfaces of young rabbits. Acta Anatomica, v. 122, n. 1, p. 62- 68, 1985. DOI: https://doi.org/10.1159/000145984
KHAN, M.; REDMAN, S. N.; WILLIAMS, R.; DOWTHWAITE, G. P.; OLDFIELD, S. F.; ARCHER, C. W. The Development of Synovial Joints. Current Topics in Developmental Biology, v.79, n. 1, p. 1 – 36, 2007. DOI: https://doi.org/10.1016/S0070-2153(06)79001-9
KIM, Y.J.; SAH, R.L.Y.; GRODZINSKY, A.J.; PLAAS, A.H.K.; SANDY, J.D. Mechanical regulation of cartilage biosynthetic behaviour: physical stimuli. Archives of Biochemistry and Biophysics, v. 311, n. 1, p. 1-12, 1994. DOI: https://doi.org/10.1006/abbi.1994.1201
KIVIRANTA, I.; SÖMANEN, A.M.; JURVELIN, J.S.; AROKOSKI, J.; OETTMEIER, R.; ABENDROTH, K.; ROTH, A.J.; TAMMI, M.I. Effect of motion and load on articular cartilage in animal models. In: KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. (eds). Articular Cartilage and Osteoarthritis. New York: Raven Press Ltd. p. 501-510, 1992.
LIN, Z.; WILLERS, C.; XU, J.; ZHENG, M. H. The chondrocyte: biology and clinical application. Tissue Engineering, v. 12, n. 7, p. 1971 – 1984, 2006. DOI: https://doi.org/10.1089/ten.2006.12.1971
LITTLE, C.B.; GHOSH, P. Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis and Cartilage, v. 5, n. 1, p. 49 – 62, 1997. DOI: https://doi.org/10.1016/S1063-4584(97)80031-3
LIU, J.; LAU, T.M.; CHOI, H.U.; TANG, L.H.; ROSENBERG, L.C. The self-association of biglycan from bovine articular cartilage. Journal of Biological Chemistry, v. 269, n. 14, p. 28366-28373, 1994. DOI: https://doi.org/10.1016/S0021-9258(18)46937-2
MEYERS, R. A. Comparative anatomy of the postural mechanisms of the forelimbs of birds and mammals. Journal of Ornithology, v. 160, n.12, p. 869 – 882, 2019. DOI: https://doi.org/10.1007/s10336-019-01678-3
PALMOSKI, M.; PERRICONE, E.; BRANDT, K.D. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis and Rheumatism, v. 22, n. 10, p. 508-517, 1979. DOI: https://doi.org/10.1002/art.1780220511
ROBERTS, S.; WEIGHTMAN, B.; URBAN, J.P.G.; CHAPELL, D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. Journal of Bone and Joint Surgery, v. 68-B, n. 3, p. 278-288, 1986. DOI: https://doi.org/10.1302/0301-620X.68B2.3958016
RODRIGUES, E. D.; PIMENTEL, E. R.; MOURÃO, P. A. S.; GOMES, L. Distribution of small proteoglycans and glycosaminoglycans in humerus-related articular cartilage of chickens. Brazilian Journal of Medical and Biological Research v. 38, n. 4, p. 381-390, 2005. DOI: https://doi.org/10.1590/S0100-879X2005000300009
SAH, R.; GRODZINKY, A.; PLAAS, A.H.; SANDY, J. Effects of static and dynamic compression on matrix metabolism in artilage explants. In: KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. (eds). Articular Cartilage and Osteoarthritis. New York: Raven Press Ltd. p. 373-392, 1992.
SCHNEIDERMAN, R.; KERET, D.; MAROUDAS, A. Effects of mechanical and osmotic-pressure on the rate of glycosaminoglycans synthesis in the human adult femoral head cartilage: an in vitro study. Journal Orthopaedical Research, v. 4, n. 8, p.393-408, 1986. DOI: https://doi.org/10.1002/jor.1100040402
SCOTT, R. A.; PANITCH, A. Glycosaminoglycans in Biomedicine. Wiley Interdisciplinary Review of Nanomedicine and Nanobiotechnology, v. 5, n. 4, p. 388 – 398, 2013. DOI: https://doi.org/10.1002/wnan.1223
SLOWMAN, S.D.; BRANDT, K.D. Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unload sites. Arthritis and Rheumatism, v. 29, n.1, p. 88-94, 1986. DOI: https://doi.org/10.1002/art.1780290112
SÖMANEN, A.M.; TAMMI, M.I.; KIVIRANTA, I.; JURVELIN, J.S.; HELMINEN, H.J. Maturation of proteoglycan matrix in articular cartilage under increased and decreased joint loading. Connective Tissue Research, v. 16, n. 3, p. 163 -175, 1987. DOI: https://doi.org/10.3109/03008208709002004
TOMIOSSO, T. C.; GOMES, L.; VIDAL, B. C.; PIMENTEL, E. R. Extracellular matrix of ostrich articular cartilage. Biocell, v. 29, n. 1, p. 47 – 54, 2005. DOI: https://doi.org/10.32604/biocell.2005.29.047
TOWBIN, H.; STAEHELIN, T.; GORDON J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of National Academy of Sciences – USA, v. 76, n. 9, p. 4350 – 4354, 1979. DOI: https://doi.org/10.1073/pnas.76.9.4350
ULRICH-VINTHER, M.; MALONEY, M. D.; SCHWARZ, E.M.; ROSIER, R.; REGIS J O'KEEFE, R. J. Articular cartilage biology. Journal American Academy of Orthopaedic Surgery, v. 11, n. 6, p. 421-430, 2003. DOI: https://doi.org/10.5435/00124635-200311000-00006
URBAN, J.P.G. The chondrocyte: a cell under pressure. British Journal of Rheumatology, v. 33, n. 10, p. 901- 908, 1994. DOI: https://doi.org/10.1093/rheumatology/33.10.901
VISSER, N.A.; VANKAMPEN, G.P.; DEKONING, M.H.; VANDERKORST, J.K. The effects of loaging on the synthesis of biglycan and decorin in intact mature articular cartilage in vitro. Connective Tissue Research, v. 30, n. 3, p. 241- 250, 1994. DOI: https://doi.org/10.3109/03008209409015040
ZINGALES, B. (1994). Analysis of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In: Genes and Antigens of Parasites, edited by MOREL, C.M., Fiocruz, Rio de Janeiro.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marcelo Augusto Marretto Esquisatto, Paula Belline, Edson Rosa Pimentel, Laurecir Gomes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).