TOPOGRAPHIC VARIATION OF THE PROTEOGLYCAN POPULATION IN TWO DIFFERENT REGIONS OF CHICKEN TARSOMETARSAL CARTILAGE

Authors

  • Marcelo Augusto Marretto Esquisatto Centro Universitário da Fundação Hermínio Ometto FHO
  • Paula Belline
  • Edson Rosa Pimentel
  • Laurecir Gomes

DOI:

https://doi.org/10.24933/rep.v8i1.317

Keywords:

Tecido conjuntivo; glicosaminoglicanos; variação anatômica.

Abstract

The structural organization and distribution of proteoglycans in the extracellular matrix of the articular cartilage of young adult chickens were analyzed using samples from the lateral and medial surfaces of the tarsometatarsus. For structural analysis, the sections were stained with Alcian Blue and Xylidine-ponceau and analyzed by bright field and polarized light microscopies. For biochemical analysis, the components of the extracellular matrix were extracted with 4M guanidine hydrochloride, dosage, fractionated by gel filtration and ionic Exchange chromatographies and analyzed by electrophoresis on agarose, agarose-polyacrylamide and polyacrylamide supports. The structural analysis showed that the collagen fibrils were arranged transversally on the periphery of the two regions. The central area of the lateral region showed more intense reactivity to Alcian Blue. The uronic acid content of the lateral region was higher than the medial region. Analysis of glycosaminoglycans in agarose gels revealed the presence of only chondroitin sulfate. This showed no differences in relation to chain size. Analysis of large proteoglycans revealed larger molecules in the medial region. The electrophoretic bands corresponding to Mr of 230, 220, 180 and 59 kDa showed reactivity for Fibormodulim in both regions. The electrophoretic band corresponding to 75kDa showed reactivity for Decorim in both regions. The changes observed regarding tissue metachromasia and distribution of proteoglycans between the regions of the tarsometatarsal cartilage may be related to differences in the distribution of mechanical forces on the articular surface.

Downloads

Download data is not yet available.

Author Biography

Marcelo Augusto Marretto Esquisatto, Centro Universitário da Fundação Hermínio Ometto FHO

Biomédico, Mestre e Doutor em Biologia Celular e Estrutural.

References

BARNETT, C.H. A comparison of the human knee and avian ankle. Journal of Anatomy, v. 88, n. 1, p. 59 -70, 1954.

BLUM, B.; BEIER, H.; GROSS, H.J. Improved silver staining of plant proteins, RNA in polyacrylamide gels. Electrophoresis, v. 8, n. 1, p. 93-99, 1987. DOI: https://doi.org/10.1002/elps.1150080203

BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein dye binding. Analytical Biochemistry, v. 72, n. 3, p. 248-254, 1976. DOI: https://doi.org/10.1006/abio.1976.9999

CAMILA B. CARBALLO, C. B.; NAKAGAWA, Y.; SEKIYA, I.; RODEO, S. A. Basic Science of Articular Cartilage. Clinics in Sports Medicine, v. 36, n. 3, p. 413-425, 2017. DOI: https://doi.org/10.1016/j.csm.2017.02.001

CHEN, C.; TAMBE, D. T.; DENG, L.; YANG, L. Biomechanical properties and mechanobiology of the articular chondrocyte. American Journal of Physiology, v. 305, n. 12, p.1202 – 1208, 2013. DOI: https://doi.org/10.1152/ajpcell.00242.2013

DIETRICH, C.P.; DIETRICH, S.M.C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analytical Biochemistry, v. 70, n. 4, p. 645-647, 1976. DOI: https://doi.org/10.1016/0003-2697(76)90496-6

DISCHE, Z. A new specific color reaction of hexuronic acids. Journal Biological Chemistry, v. 167, n. 1, p. 189-199, 1947. DOI: https://doi.org/10.1016/S0021-9258(17)35155-4

EGGLI, P.S.; HUNZIKER, E.B.; SCHENK, R.K. Quantification of structural features characterizing weight- and less- weigth-bearing ergions in articular cartilage: a steriological analysis of medical femoral condyles in young rabbits. Anatomical Records, v. 222, n. 3, p. 217-227, 1988. DOI: https://doi.org/10.1002/ar.1092220302

ESQUISATTO, M.A.M.; PIMENTEL, E.R.; GOMES, L. Extracellular matrix composition of different regions of knee joint cartilage in cattle. Annals of Anatomy, v. 179, n.7, p. 433 – 437, 1997. DOI: https://doi.org/10.1016/S0940-9602(97)80044-1

ESQUISATTO, M. A. M.; CONTRICIANI, R. E.; PIMENTEL, E. R.; GOMES, L. População de proteoglicanos em diferentes sítios anatômicos da cartilagem articular do joelho bovino. Ensaios Pioneiros, v. 7, n.1, p. 73 -89, 2023. DOI: https://doi.org/10.24933/rep.v7i1.301

FARNDALE, R.W.; BUTTLE, D.J.; BARRET, A.J. Improved quantitation and discrimination of sulphated glyocosaminoglycans by use of dimethylmethylene blue. Biochemica Biophysica Acta, v. 883, n. 2, p. 173-177, 1986. DOI: https://doi.org/10.1016/0304-4165(86)90306-5

GOLDRING, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Practice & Research Clinical Rheumatology, v. 20, n. 5, p. 1003 – 1025, 2006. DOI: https://doi.org/10.1016/j.berh.2006.06.003

GOMES, L.; ESQUISATTO, M.A.M.; BELLINE, P.; PIMENTEL, E.R. Is there a relationship between the state of aggregation of small proteoglycans and the biomechanical properties of tissues? Brazilian Journal of Medical and Biological Research, v. 29, n. 10, p. 1243-1246, 1996.

HALL, A.C.; URBAN, J.P.G.; GEHL, K.A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. Journal Orthopaedical Research, v. 9, n. 1, p. 1-10, 1991. DOI: https://doi.org/10.1002/jor.1100090102

JURVELIN, J.; HELMINEN, H. J.; LAURITSALO, S. Influences of joint immobilization and running exercise on articular cartilage surfaces of young rabbits. Acta Anatomica, v. 122, n. 1, p. 62- 68, 1985. DOI: https://doi.org/10.1159/000145984

KHAN, M.; REDMAN, S. N.; WILLIAMS, R.; DOWTHWAITE, G. P.; OLDFIELD, S. F.; ARCHER, C. W. The Development of Synovial Joints. Current Topics in Developmental Biology, v.79, n. 1, p. 1 – 36, 2007. DOI: https://doi.org/10.1016/S0070-2153(06)79001-9

KIM, Y.J.; SAH, R.L.Y.; GRODZINSKY, A.J.; PLAAS, A.H.K.; SANDY, J.D. Mechanical regulation of cartilage biosynthetic behaviour: physical stimuli. Archives of Biochemistry and Biophysics, v. 311, n. 1, p. 1-12, 1994. DOI: https://doi.org/10.1006/abbi.1994.1201

KIVIRANTA, I.; SÖMANEN, A.M.; JURVELIN, J.S.; AROKOSKI, J.; OETTMEIER, R.; ABENDROTH, K.; ROTH, A.J.; TAMMI, M.I. Effect of motion and load on articular cartilage in animal models. In: KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. (eds). Articular Cartilage and Osteoarthritis. New York: Raven Press Ltd. p. 501-510, 1992.

LIN, Z.; WILLERS, C.; XU, J.; ZHENG, M. H. The chondrocyte: biology and clinical application. Tissue Engineering, v. 12, n. 7, p. 1971 – 1984, 2006. DOI: https://doi.org/10.1089/ten.2006.12.1971

LITTLE, C.B.; GHOSH, P. Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis and Cartilage, v. 5, n. 1, p. 49 – 62, 1997. DOI: https://doi.org/10.1016/S1063-4584(97)80031-3

LIU, J.; LAU, T.M.; CHOI, H.U.; TANG, L.H.; ROSENBERG, L.C. The self-association of biglycan from bovine articular cartilage. Journal of Biological Chemistry, v. 269, n. 14, p. 28366-28373, 1994. DOI: https://doi.org/10.1016/S0021-9258(18)46937-2

MEYERS, R. A. Comparative anatomy of the postural mechanisms of the forelimbs of birds and mammals. Journal of Ornithology, v. 160, n.12, p. 869 – 882, 2019. DOI: https://doi.org/10.1007/s10336-019-01678-3

PALMOSKI, M.; PERRICONE, E.; BRANDT, K.D. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis and Rheumatism, v. 22, n. 10, p. 508-517, 1979. DOI: https://doi.org/10.1002/art.1780220511

ROBERTS, S.; WEIGHTMAN, B.; URBAN, J.P.G.; CHAPELL, D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. Journal of Bone and Joint Surgery, v. 68-B, n. 3, p. 278-288, 1986. DOI: https://doi.org/10.1302/0301-620X.68B2.3958016

RODRIGUES, E. D.; PIMENTEL, E. R.; MOURÃO, P. A. S.; GOMES, L. Distribution of small proteoglycans and glycosaminoglycans in humerus-related articular cartilage of chickens. Brazilian Journal of Medical and Biological Research v. 38, n. 4, p. 381-390, 2005. DOI: https://doi.org/10.1590/S0100-879X2005000300009

SAH, R.; GRODZINKY, A.; PLAAS, A.H.; SANDY, J. Effects of static and dynamic compression on matrix metabolism in artilage explants. In: KUETTNER, K.E.; SCHLEYERBACH, R.; PEYRON, J.G.; HASCALL, V.C. (eds). Articular Cartilage and Osteoarthritis. New York: Raven Press Ltd. p. 373-392, 1992.

SCHNEIDERMAN, R.; KERET, D.; MAROUDAS, A. Effects of mechanical and osmotic-pressure on the rate of glycosaminoglycans synthesis in the human adult femoral head cartilage: an in vitro study. Journal Orthopaedical Research, v. 4, n. 8, p.393-408, 1986. DOI: https://doi.org/10.1002/jor.1100040402

SCOTT, R. A.; PANITCH, A. Glycosaminoglycans in Biomedicine. Wiley Interdisciplinary Review of Nanomedicine and Nanobiotechnology, v. 5, n. 4, p. 388 – 398, 2013. DOI: https://doi.org/10.1002/wnan.1223

SLOWMAN, S.D.; BRANDT, K.D. Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unload sites. Arthritis and Rheumatism, v. 29, n.1, p. 88-94, 1986. DOI: https://doi.org/10.1002/art.1780290112

SÖMANEN, A.M.; TAMMI, M.I.; KIVIRANTA, I.; JURVELIN, J.S.; HELMINEN, H.J. Maturation of proteoglycan matrix in articular cartilage under increased and decreased joint loading. Connective Tissue Research, v. 16, n. 3, p. 163 -175, 1987. DOI: https://doi.org/10.3109/03008208709002004

TOMIOSSO, T. C.; GOMES, L.; VIDAL, B. C.; PIMENTEL, E. R. Extracellular matrix of ostrich articular cartilage. Biocell, v. 29, n. 1, p. 47 – 54, 2005. DOI: https://doi.org/10.32604/biocell.2005.29.047

TOWBIN, H.; STAEHELIN, T.; GORDON J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of National Academy of Sciences – USA, v. 76, n. 9, p. 4350 – 4354, 1979. DOI: https://doi.org/10.1073/pnas.76.9.4350

ULRICH-VINTHER, M.; MALONEY, M. D.; SCHWARZ, E.M.; ROSIER, R.; REGIS J O'KEEFE, R. J. Articular cartilage biology. Journal American Academy of Orthopaedic Surgery, v. 11, n. 6, p. 421-430, 2003. DOI: https://doi.org/10.5435/00124635-200311000-00006

URBAN, J.P.G. The chondrocyte: a cell under pressure. British Journal of Rheumatology, v. 33, n. 10, p. 901- 908, 1994. DOI: https://doi.org/10.1093/rheumatology/33.10.901

VISSER, N.A.; VANKAMPEN, G.P.; DEKONING, M.H.; VANDERKORST, J.K. The effects of loaging on the synthesis of biglycan and decorin in intact mature articular cartilage in vitro. Connective Tissue Research, v. 30, n. 3, p. 241- 250, 1994. DOI: https://doi.org/10.3109/03008209409015040

ZINGALES, B. (1994). Analysis of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In: Genes and Antigens of Parasites, edited by MOREL, C.M., Fiocruz, Rio de Janeiro.

Published

2024-10-16

How to Cite

Esquisatto, M. A. M., Belline, P., Pimentel, E. R., & Gomes, L. (2024). TOPOGRAPHIC VARIATION OF THE PROTEOGLYCAN POPULATION IN TWO DIFFERENT REGIONS OF CHICKEN TARSOMETARSAL CARTILAGE. Revista Ensaios Pioneiros, 8(1). https://doi.org/10.24933/rep.v8i1.317

Issue

Section

BIOLOGY AND HEALTH SCIENCES